
On the stability cf weakly inhomogen~ous states 

I' (0, L) is found from equation 

951 

and lies in the right half-plane if max, (II’s I c) > 1. Thus a rod of sufficient length is 

stable if max, (IV2 I c) < 1 and unstable if max, (IV” / c) > 1. 
The concepts developed above can also be used in the problems which can be reduced 

to infinite systems of ordinary differential equations, such as e. g. the problems of hydro- 

dynamic stability. 
The author thanks A.G..Ku~kov~ii for valuable comments and V,fa, Levchenko for 

discussing the problems related to the present paper. 
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An extension of the equivalence of “area” rule [I, 21 is presented. The rule was 
initially derived for stationary flows of perfect finviscid and non-heat-conduc- 

ting) gas past slender fine pointed bodies (or blunted bodies in the hypersonic 
flow case) whose transverse dimensions are small in comparison with their Iength, 
According to that rule the wave drag of a three-dimensional body is equal to the 

wave drag of an axisymmetric body with the same distribution of cross-sectional 

areas along the axis. The rule is extended here to stationary and nonstationary 
flows past nonslender bodies and to internal flows, using the procedure of averag- 
ing with respect to the angular variable of a cylindrical system of coordinates, 
That procedure is, strictKy speaking, valid for nearly axisymmetric bodies. How- 

ever the numerical solutions obtained by the authors for a fairly wide range of 
external and internal problems show that the generalized equivalence rule is 
applicable to Substantially nonaxi~mme~ic ~n~g~ations (*) (see next page), 



1 l The aim of the present investigation is to prove the appiicability of the eqtiva- 
lence rule to nearly axisymmetric stationary and nonstationary flows of perfect gas, 
Deviation of a flow from the axisymmetric pattern can be caused by the extensiveness 

of streamlined surfaces and by the lack of symmetry of initial and boundary conditions, 

as well as by farce fields and external sources of energy and mass, whenever these are 
present in the problem, Let us assume that these factors are such that the parameters of 

the stream are almost everywhere close to the parameters of some “reference” axisym- 

metric flo_w in which these factors are absent. Small neighborhoods of d~sconti~u~~ sur- 

faces resulting from the distortion of the reference axisymmetric flow and which inwhat 

follows will be called ~co~~~ to conventional term~~oio~~ strong d&continuities, Sub- 

stantiaf$ nonaxi~mmeu~c d~sco~~n~~es of low intensity, s~~quen~y called “weak”, 

may also be present in the stream. 
Investigation of this kind of flows is conveniently carried out in a cylindrical system 

of coordinates ~yq, whose lc -axis is oriented in such a way as to ensure a weak depen- 

dence of the streamlined surfaces and other conditions on the angle q. 
We denote the projections of the velocity vector II on the axes of the cylindrical sys- 

tem of coordinates by U, 21 and w , and write the condition of impenetrability of stream- 

lined surfaces in the form 

where y L= f” (l? X, rp) is the equation of the streamlined surface, f” is a known func- 
tion of its argurne~~~ and the snbscrfpts denote the related partial derivatives, 

We introduce the ax~symmetric surfaces y = Pw (to, 23, which are close to the three- 

dimensional surfaces and are defined by equations of the form 

y -= P” (t, .X) -+ E.,6/1u (1, t, C(J) CL 21 

We define functions Fw and Sf” by equalities 
3% (J. 31 

where E, is the ma~mum (in modnlo for atf f, 2 and up) value of the remainder ap- 
pearing in the right-bard part of the second equafity. Owing to this 16)” 1 .(, 1. For 

nearly axi~mmetric bodies 8, < 1 fit is assumed here and sn~qncnt~y that all quan- 
tities are normafiu=d with respect to characteristic parameters of the considered prob- 
lem), and FwEO, as determined by (1.3), is the same as the mean “over the area” to within 

em, i.e. ‘2 : . 

F” (t, a) = {&- \ [to (t, ez, (p)]% dq CL 41 

6 
Note that the smallness of erU in (1.3) is generally insufficient for ensuring the Close- 

ness of the stream pattern to axisymmetric, since such smaIlness does not imply the 

“f The authors became recently aware of M, N,Kogan’s paper on the drag of bodies of 
a shape close to that of bodies of revolution, Inzh. Zh, , VoX, I, No 3. 1961, in which tbe 

equivalence rule is extended to snb- and supersonic uniform flows past nonslender bodies 
of a shape dose to &at of bodies of revolution. 
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smallness of the derivative f,” in the condition of impermeability (1.1) because its 
order of magnitude is determined not only by E&f UJ, but also by the pattern of its varia- 

tion with respect to w. If, for instance, the variation is such that GfQclu - 1 / E,~., then 

i? - 1. In the case of a considerable twist of the flow, in which 1~ - u or U: - r, (1.1) 

implies a considerable deviation of the flow from axial symmetry (at least in the body 

neighborhood) even for’ e, 4 1 in (1.3). Consequently, in the subsequent analysis we 

assume that for the considered surfaces 6f,w - 1. 

By analogy to (1.2) we define surfaces of strong discontinuities y = f” (t, .A;, (p) by 

zj = t;” (t, 2) + &,6fS (t, 5, q) (1.5) 

where functions F” and 6f” and parameters E, are defined in the same manner as 

P, Sf” and E, in (1.2) and in the genera! case F, # 8,. 
Let 01 be a three-dimensional flow region. We introduce an axisymmetric region Q 

bounded by surfaces y = FW ( t, .r) with functions Fw defined by (1.3) or (1.4) and 
consisting of axisymmetric subregions Qi separated by axisymmetric surfaces of strong 

discontinuities y = F” ( 1, JZ) . Everywhere outside the small neighborhoods of bound - 

aries of Qi the fields of gas parameters in o and &? are assumed to be the same,while 

in such neighborhoods they are obtained by analytic continuation from w. Because of 
this it is possible to assume that throughout pi parameters of the stream satisfy the in- 

put equations of the three-dimensional flow, which are valid in O. 

2. Let o = o (t, X, y, ‘p) be an arbitrary parameter of the stream, which in accor- 
dance with the described procedure is determined not only in w, but also in the axisym- 

metric region Q. This makes it possible to carry out averaging with respect to cp by 
formula 2X 

z(t, 2, y) = (3) = &- ’ 
* I 

0 (tl J? Y, cp) dq 
0 

Here and subsequently a capital letter denotes the related quantity and integration with 
respect to 9 is carried out with other variables fixed. We can now write similarly to 

(1.2) for both (r) and L? 
o = 2 (1, X, 2/) +m F&J (f, X, y, Cp) (2.1) 

where parameter E, is the maximum absolute value of the remainder ((5 - 2) (through- 
out the considered region of independent variables) on the strength of which 160 1 6 1. 

In the axisymmetric region Q the mean parameters, i.e. Z , may become discon- 

tinuous only at transition through the axisymmetric surfaces y = F” (t, x) defined 
above, while 60 may at the same time have stepwise increments also at essentially non- 
axisymmetric surfaces of weak discontinuities. 

The functions which specify the initial distributions of parameters (at t = O), includ- 

ing that of parameters in the oncoming stream (e. g. for x = - co), the force andother 
fields associated with external sources can also be represented in the form (2.1). I_et 

eo, eY7 CCL,. . * be small parameters corresponding to associated distributions. These 
parameters are generally independent and may even be of different orders of magnitude. 
This is even more true with respect to parameters ea which define the deviation from 

axial symmetry of distributions of stream parameters. Nevertheless, the introduction of 
e = max (ew, eO, ey, E,, e,, E,) makes it possible to write expressions for any of 
formulas (1.2) (1.5) and (2.1) as 
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y = F” (t, x) + &Af” (t, x, rp) (2.2) 
y = p” (t, x) $ eAfS (t, x, cp) 

cJ = 2 (t, x, y) + EA(S (t, x, y, ‘p) 

Expressions for the distribution of parameters in the oncoming stream, as well as for 

power and other external fields at t = 0 arc similar. In accordance with the defini- 

tion e for any function 5 we have A 5 = (EC / E) 6 5 and, since EC < E, the maximum 
of 1 A 5 1 evidently does not exceed unity. Moreover, owing to the method of averaging 
with respect to cp 27X 

~agc+~z~SS:dq7=0 (2.3) 
.I 

0 0 
Let x (o1, o2, . . .) be an arbitrary continuous function of stream parameters o, , 

(J.L, . . . . Using expressions (2.2) the expansion of X in (or - 2 t) , . . . and the pro- 
perty (2.3), it is now possible to show that 

< x Co17 02, * . .)> = x (Z,, 221. * .) + 0 (E2) (2.4) 

This implies in particular that the thermodynamic relationships between averaged 

parameters are to within E the same as the relationships between actual quantities. 

3, In conformity with the definitions given above we have for any parameter at the 
surface of the body, e. g. for the pressure pW (t, ,A’, ‘p) 

PW (t, z, r.p) = P (1, 2, f”) + EAP (1, x, f”, cp) = (3.1) 

PW (t, .G) + F [(al- i dy) Af” -t API~_.~w + 0 (c2) 
where Pw (t, x)= P (1, .A:, Fw) . Taking into account this expansion, the first of for- 
mulas (2.2) and the property (2.3), it is possible to show that the projection of the x. -axis 

of pressure forces acting at instant of time t on the surface of the body between cross sec- 

tions x m= x1 and x = x;~ is 

2n 1 P’” (t, x) P’” (t, x) F,." (t, s)dx + 0(c2) 
-Tl 

It follows from this that X and, as can be readily shown, also the coefficient of wave drag 

are determined by the integralof the averaged (with respect to cp) parameter taken along the 
surface of the axisymmetric configuration, with an accuracy to within F , equivalent to the 
initial three-dimensional configuration as regards the distribution of the radius (or ofthe 
area of cross section within the same accuracy) averaged with respect to CL. 

It is shown below that the equations , and also the initial and boundary conditions 
which determine the averaged quantities are equations and conditions of the axisymmet- 
ric flow in Q. Initial three-dimensional configurations, forces and other external sour- 

ces, and the functions which define the parameter distribution at t = 0 and at the boun- 
daries of the considered region (when such are present) are replaced by their axisymmet- 
ric equivalents by using the procedure of averaging with respect to cp. That procedure 
may be considered to be the extension of the equivalence rule to any arbitrary perfect 
gas flows close to the axisymmetric pattern. 



On the "equivalence" rule for flows of perfect gas 955 

Below we present an outline of the proof of the stated rule. 
Any of the equations of flow, i. e. the equation of continuity, the three equations of 

momentum, and the equation of energy can be represented in the form 

$+%+F+$+g;() (3.3) 

where n, 0, c and e are known functions of the stream parameters and of independent 

variables (e. g. of specified functions of time and coordinates if external forces are pre- 

sent), while g may or may not be present. Equations (3.3) are satisfied in the continu- 

ity subregion of parameters of axisymmetric regions Q i. Substantially nonaxisymmetric 
surfaces of weak discontinuities (in the meaning given above) may exist inside Qi . If 

‘p = CD ( t, 2, y) is the equation of such surface and [nl , [b] , _ . . are the remainders 
of values of parameters a, b, . . . at the discontinuity, the corresponding law of con- 

servation has the form 

Y (at [aI + ax Lb1 + Cbu [cl) - [e] =O for cp = CD (t X, y) t3* 4, 

Integrating (3.3) with respect to cp for fixed t, x and y over each interval in 0 \( 
cp < 231, of the parameter discontinuity and adding the derived equations with allow- 

ance for (3.4), after some transformations, we obtain the equation 

ay <a) 2_+2YgL+3!$+(g)=o (3.5) 

which is valid in every axisymmetric subregion Qi. Substituting related functions of 

averaged parameters for mean (n), . . . (e. g. R U for (mu) ) , which we denote here 

by A,. . ., we finally obtain the equation 

(3.6) 

which, unlike the exact equation (3.5) is accurate to within a . 
The relationships at axisymmetric surfaces of strong discontinuities are derived by 

linearizing related laws of conservation which are satisfied at the initial nonaxisymmet- 
ric surfaces and transferring all parameters to axisymmetric surfaces y = F” (t, 3:) , 
using formulas of the kind of (3.l),and then integrating with respect to cp from 0 to 2n. 

The resulting equation which complements (3.6) at discontinuity surfaces with an accu- 

racy to within E , has the form 

F,8 [Al + F,S LB1 - [Cl = 0 for y = F” (t, ,x) (3.7) 

Applying the same procedure to the condition of impermeability (1. l), we obtain with 

the same accuracy 
UF,” - V + FtW = 0 for y = Fw (t, cc) 

Initial conditions and the conditions in the oncoming stream (and at boundaries of Q 
other than surfaces of bodies, whenever such are present) are obtained for P , U, . . . 
by averaging with respect to cp , in accordance with the definition of averaged values, 
the initial and boundary distributions of p, u, . . . . These conditions together with 
Eqs. (3.6). the relationships at strong discontinuities. and the condition of impermeability 
(3.8) define a certain problem of axisymmetric flow in 52. The solution of that prob- 
lem yields the distribution of Pw over the streamlined surface and, in accordance with 
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(3. Z), the integral of pressure forces X. 
Since terms containing E’ are omitted in the right-hand parts of equations used for 

solving the problem, one would expect the error of determination of P”, and consequent- 

ly also of X , to be of that order. However, in some cases this error may depend not only 
on the magnitude of neglected terms, but also on dimensior. D of that part of region 
Q in which the flow determines fjw along the considered section of the body. Thus, 

for instance, in the case of stationary supersonic flows L) - 1 must be additionally 
specified. If D _ ‘l / E, the error of determination of I)” may be of the order of a. 

4. The procedure followed above is somewhat similar to that used for averaging 
with respect to areas which yields equations for one-dimensional flow in channels. The 

same fairly simple and general procedure can be used for substantiating the application 

of the equivalence rule to more complex flows (e. g. nonequilibrium flows). Various 

versions of this procedure are also possible and may prove advantageous in some cases. 

Let us consider one of such variants which for simplicity’s sake we apply to a stream in 
which there are no markedly nonaxisymmetric surfaces of weak discontinuities (in the 

meaning defined above). 

let the small parameters eh, where li _ 1. . ., n, define the various factors which 

cause the flow to be three-dimensional, such as: deviation of the body shape fromaxial 

symmetry, initial and boundary distributions, and also forces and other external sources. 
let us assume that any of the flow parameters can be expanded into series in integral 

powers of ek /I 

3 -=- Sn (I, J, ?/) -/- 2 Ek;k (f, -‘, I/, T) -f- . . (4.1) 
/i_=, 

where 5. is the solution of some axisymmetric problem and dots denote subsequent terms 

of the expansion. 
To derive the conditions which determine eh,we continue analytically the solution of 

the axisymmetric problem into the neighborhood of the boundaries of regions 0) i and, 

using formulas of the kind of (3.1) together with the condition of impermeability, trans- 

fer the relationships at strong discontinuities to related axisymmetric surfaces. Substitu- 
ting expansions (4.1) into the obtained conditions and taking into account that functions 

uO provide the solution of the axisymmetric problem, we obtain in the conventional man- 
ner linear equations which relate cifC to each other, and in the condition of impermeabi- 

lity also to the function which defines the deviation of the shape of the body from axial 

symmetry. If the equation defining the shape of the body is 

?I x foW (’ , .r) El/l Ii’ (/ , .(‘. q7) 

the condition of impermeability (1.1) yields r~ relationships of the kind 

2-h = Uhf,,XW + (f1t" + U"flX1" + UhflTpw i io’“) bh for y -= fo” (1, 5) (4.2) 

where &, is the Kronecker delta and k =-- I, . . , 11 . The linearized equations at 
strong discontinuities and the initial and boundary conditions different from (4.2) are 
of a similar form. 

By linearizing the nonlinear input system we obtain in a similar manner n linear sys- 
tems for ok which differ only by their right-hand parts. Any of these systems is of the 

1, (“,J - !zh. 
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where L (2) is a linear differential operator acting on the column vector z; ok is a 
column vector whose components are uk, vk, . . ., and g, is a column vector whose 
components (or one of the components) is nonzero when external forces or sources of 

mass and energy are nonsymmetric. The coefficients of operator C (z) are expressed in 

terms of parameters of the axisymmetric solution and its partial derivatives and, conse- 

quently, they and the coefficients in (4.2) are independent of q. It is convenient to 

include in system (4.3) the finite linear relationships between the perturbations of ther- 

modynamic parameters, which are obtained by the linearization of the equation of state. 

If expansions (4.1) are satisfied 

where X, is the integral of forces acting on the axisymmetric body, (2) is the integrand 

averaged with respect to q for y ~7 fu” , and dots denote higher order terms. 

The equations and conditions which for y = fo’” determine (qk) and, consequently, 

also :pk) which appear in (4.4). are obtained by integrating system (4.3), conditions 
(4.4). and other linearized initial and boundary conditions withrespect to cp from 0 to 

2.-l . Taking advantage of the arbitrariness of the selection of the axisymmetric surface 
ZJ = foW and of the axial symmetry of the distribution of force, initial parameters, etc. , 
and setting fC,lu = FW , we determine the remaining indicated functions by averaging 

with respect to W and find that <fiW)? ~j1,~~~:, (gk), . . vanish. Moreover, since in the 
absence of weak discontinuities (2,) = 0, the averaged equations and conditions do not 
contain derivatives averaged with respect to q . As the result the system of equations 

and conditions which determines the mean values of all additions becomes not only line- 
ar,but also homogeneous. If the conditions specified at the end of Sect. 3 are satisfied, 
the trivial solution which satisfies all equations and conditions of the derived linear prob- 

lem yields the coefficients of the first terms of expansion (4.1) with an error of the order 

of 0 (F~) In such cases X (t, rl, x2) : X, (1. .r Ir .r& with an accuracy to within (1 (F~). 

The described method was used in [3, 41 for deriving equations which determine cer- 
tain integral properties of slender three-dimensional configurations (bodies with through- 
flow channels and wings) in a supersonic stream (*). It differs from that described in 

Sects. 1-3 in that the averaging with respect to q~ is preceded by the linearization of 
not only of the condition of impermeability and of relationships at strong discontinuities, 

but also of the differential equations of flow. Superficially the two methods appear to 
be equivalent. Although for many kinds of flows this is true, it is not necessarily so in the 
case of other flows. In a number of important cases (e. g. transonic speeds) expansions 

of the kind (4.1) with coefficients determined by system (4.3) - on whose linearity the 

preceding analysis is based - are not valid. In such cases the related system is nonlinear, 
and cannot be analyzed by the very simple method described here. However, in the ini- 
tial approach to the prblem only the smallness of parameter deviation from some ave- 

raged (with respect to v) -Jalues is important and independent of the kind of equations 

“) M. N. Kogan (see footnote on P. 952) had proved by the same method the generalized 
equivalence rule for nonslender bodies of a shape close to that of bodies of revolution. 
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which define the deviations. It should be stressed that only when expansions (4.1) are 
valid, is the order of magnitude of parameter e introduced in (2.2) the same as that of 

max ey: . 

6, The following examples illustrate the applicability of the equivalence rule to 

stationary ilows. They include external and internal problems of transonic and super- 
sonic flows of perfect gas with the specific heat ratio x = 1.4. 

The first example is that of flow past cones of various cross-sectional form. Calcul- 
ations were carried out with the use of the process, described in f5], of establishing a 
system of spherical coordinates in terms of the radial variable and integrating the equa- 

tions of three-dimensional flow, using the difference method proposed in [S, 73. 
All of the investigated examples dealt with flows past bodies at zero angle of attack. 

Besides cones of circular and elIiptica1 cross sections, cones with cross sections close to 
a square and to an equilateral triangle were considered. The latter (as well as nozzles 

of similar cross-sectional shape) are called below “square” and “triangular”, respectiv- 
ely. The boundary of a triangular cane cross section consisted of three straight lines 

joined by circular arcs. The radius of the joining circle was Px / 21/‘?i I where 10x is 

the length of the straight line segment for any I . Cross sections of square cones were 
similarly constructed with the straight line segment length and the joining radius equal, 
respectively, PX and Px i 2. Coefficients 10 were obtained from the condition ofequal- 

Fig. 1 

ity (for equal :r) of cross-sectional areas of 
the investigated cones to ~~espond~g areas 
of a circular cone with the vertex half-angle 

R,. Applying this condition to elliptical cones 
with a fixed ratio of semiaxes a / b of the 

generating ellipse, we determined the quan- 
tity a0 --= II / t. 

The results of calculations of the super- 
sonic stream at M, = 5 flowing past square, 

triangular, and elliptic cones with cross-sec- 

tional areas equivalent to those of a circular 
cone with ek = W are shown in Fig, 1, 

where p” is the ratio of surface pressure on 

the investigated cone to that at the corre- 

sponding part of the circular cone, Curves 
1 - 4 relate to two elliptic cones with a / b = 
1.5 and 2.0, and to a square and a triangular 

cone. When examining Fig, 1 it is necessary to bear in mind that there are two, four 
and three planes of symmetry for the elliptic, square, and triangular cones, respectively, 
and that the maxima of p” lie at the points of the contour farthermost from the 1: -axis, 
i.e. at the intersection line of the planes of symmetry. It will be seen from this figure 
that the deviation of p” from unity is in this case considerable. However the values 
obtained by averaging the considered distributions with respect to 9, which in accord- 
ance with (3.1) coincide with the values of $‘, were for the same cases.equal to 0.96, 

0.87, 1.01, and 9.93. The ~nsid~~ably smaller deviation of p0 from unity confirms 

the general derivation of the extented equivalence rule by which the difference between 
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the averaged and the axisymmetric parameters is 0 (G) when the deviation of local 

from averaged parameters is of the order of E. 
The coefficients of wave drag were calculated for the above cones by formula 

c1 = 2 (X - P,S) i SP,!&, 

where p is the density, Q is the velocity modulus, the subscript 00 denotes parameters 
of the oncoming stream, and S is the area of a cross section. For conical bodies X and 

S are linear functions of ~2, and C, is independent of x . For the considered conical 

bodies C, was found to be equal to 0.260, 0.256, 0.255 and 0.251, while for the equi- 
valent (with respect to area) circular cone it is 0.261, which corresponds to a maximum 

deviation of 4 % . 
Under conditions different from those considered above (as regards ~,and 13,) the 

concept of error of the equivalence rule yields for an elliptic cone with a / 6 = 2.0 the 

following values. For M, = 5 the coefficients of wave drag of three elliptic cones equi- 
valent to circular cones with ek = 10, 20, and 25’ are: 0.076, 0.26 and 0.38, respec- 

tively. For circular cones c, = 0.075, 0.26 and 0.37, which corresponds to a maximum 
devaition not exceeding 3 %. For an elliptic cone equivalent to a circular one with 

8, = 20”, cr = 0.29, 0.26, 0.24, respectively, for M, = 3.0, 5.0 and 10. For a 
curcular cone under the same conditions cX = 0.28, 0.26 and 0.25, hence in this case 
the deviation is of the same order of magnitude. 

The flow at M, = 5 past four three-dimensional pointed bodies was also calculated, 

The crosssections of each of these bodies were of fixed configuration consisting of a con- 

ical nose equivalent to a circular cone with 13~ = 20” and joined to a tangent parabolic 

ogive. All cones considered above (for Mm = 5 and 13, = 20”) were used as nose cones. 
The I - and y-coordinates and the length of bodies were normalized with respect to the 

length of the nose, and the total length of the body expressed in these units was equal 

ten. The investigated configurations were equivalent to bodies of revolution whose para- 
bolic generatrix was defined by the equation y = I/CL + [3x tangential to the nose cone. 
This configuration resulted in a twenty-fold increase of the cross-sectional area between 
z = 1 and x = 10. 

ld P” 

--. 
--__ ---__ ----_--*_ 

l.o------------- 
.____-.--.-.--.-- .-.- 

-.-.- 

as I I ! I I 
0 2 4 6 8 5 

Fig. 2 

The nonuniformity of pressure distribution over the surface of a body of elliptic cross 

section (a / b = 2.0) (in this case the nonuniformity is maximum) is shown in Fig. 2, 
where the dash and the dash-dot lines relate to the distribution of p” along generatrices 
lying in planes of symmetry which pass through the semimajor and semiminor axes of 
cross section. The continuous curve shows the distribution of the related parameter ave- 
raged with respect to v. The coefficients of wave drag cX of the considered bodies of 



960 V.M.DvoretskJi, M.Ia.Ivanov, B.A.Koniaev and A.N.Kraiko 

elliptic (a / h = 1.5 and 2.0) square, and triangular cross sections were equal to the c,~ 
of equivalent bodies of revolution within the computation accuracy (1 - 2 %). 

The following examples deal with the flow in the supersonic parts of three three-dimen- 

sional nozzles equivalent to an axisymmetric nozzle whose generatrix consisted of an 
arc of circle of radius r mm~ :! with its center on the y -axis and tangent to a section of -_- 
parabola y = I/a I px,. All dimensions were normalized with respect to radius r,, of 
the initial cross section. The coefficients z and b in this formula were such as to ensure 

the tangency of the circle and the parabola and a four-fold expansion of investigated 
nozzles in y from .(’ =- 0 to s = 20, i.e. y ( 10) 4. The cross sections of the three- 
dimensional nozzles were of the same shape as that of the elliptic ( 0 I h -:= 2.0). square, 

and triangular cones considered above, At the inlet cross sections (at .C = II) of all noz- 
zles the stream was supersonic and uniform at u,, I-: I. 1 normalized with respect to the 

critical velocity q*. Computations were carried out in elliptic coordinates and the dif- 
ference method [6, ‘71 was used. 

Pressure distribution at the wall along lines of its intersection with planes of symmetry 

is shown in Fig. 3 constructed on the same basis as in Fig. 2. The dash and the dash-dot 

Fig. 3 

lines relate to points of the major and minor axes of the cross section, respectively, and 

the solid line represents the pressure at the wall averaged with respect to fp. As previ- 

ously, the pressure was normalized with respect to the pressure at the wall of the equiva- 
lent axisymmetric nozzle (at the same .I!. 

It will be seen from Fig. 3 that in this example the nonuniformity of pressure distribu- 
tion with respect to 9 is considerably greater than in the external problem. The same 
can be said about the ratio of averaged parameters to their corresponding values in the 

axisymmetric case, although it is considerably closer to unity. The equivalence rule 
yields even better results for the integrals of pressure forces, which for .z~ -- 0 and .I’~ -= 

10, i.e. for nozzles with an area expansion ratio of 16, were 1.618, 1.919 and 1.616 
for elliptic, square, and triangular nozzles, respectively, while for the axisymmetric noz- 
zle X = 1.634 (X and the stream momentum are normalized with respect to ?*q*‘?yo2, 
where p* is the critical density of the stream), The momentum at outlet cross sections 
of these nozzles were, respectively, 6.964, 6.965, 6.962 and 6.980, which corresponds 
to a maximum error of 0.25%. The error of determination of momentum at all cross sec- 
tions between 5 = o and 1 -= IO is of the same order of magnitude (not more than 

0.5 %). 
Two examples of transonic flow in a nozzle and past the afterbody of a semi-infinite 
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cylinder of elliptic cross section ( a i b = 2.0 ) were also computed. In both these cases 
the stationary distribution of paramters were obtained in the course of determination 
with respect to time, as described in [8 - 10-J. 

Fig. 4 

The three-dimensional Lava1 nozzle was equivalent as to 
its area to an axisymmetric nozzle whose meridian cross 

section is shown in the lower part of Fig. 4. In the upper part 

of that figure, which is similar to Fig. 3, are shown curvesof 

pressure distribution at two generatrices of the wall, and also 

the variation of related averaged quantity. The difference 
between the momenta of the three-dimensional and the axi- 

symmetric nozzles (of the order of 0.4%) is within the com- 

putation accuracy. A similar situation was revealed by the 

computation of flow at dT, = 0.9 past the afterbody equi- 
valent to that considered in [lo], which at z = IJ was smooth- 

ly joined to a semi-infinite cylinder whose radius was taken 
as the characteristic dimension. The afterbody generated by 

a circle of radius r = 9.68 was joined at point z == 2.3 to 
another semi-infinite cylinder (y E 0.67). 

The above computations prove the validity of the generalized equivalence rule far 
beyond the restrictions imposed in its derivation. We note that an experimental proof 
of the validity of the area rule for hypersonic flow past blunted slender bodies was given 

in [ll]. 
In conclusion the authors thank A. B. Vatazhin and G. G, Chernyi for valuable discus- 

sions. 
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The hypersonic flow around smooth blunted bodies in the presence of intensive 
injection from the surface of these is considered. Using the method of external 

and internal expansions the asymptotics of the Navier-Stokes equarions is con- 

structed for high Reynolds numbers determined by parameters of the oncoming 
stream and of the injected gas. The flow in the shock layer falls into three char- 
acteristic regions. In regions adjacent to the body surface and the shock wave 

the effects associated with molecular transport are i~ignifi~nt, while in the in- 
termediate region they predominate. ln the derivation of solution in the first 

two regions the surface of contact discontin~ty is substituted for the region of 

molecular transport (external problem), An analytic solution of the external 
problem is obtained for small values of parameters E, = p, i PS” and 6 Z-T= 

^I 
i’ u: 2L,u.* I p, 1 2 I’m in the form of corresponding series expansions in these para- 

meters. Asymptotic formulas are presented for velocity profiles, temperatures, 
and constituent concentration across the shock layer and, also, the shape of the 
contact discontinuity and of shock wave separation. The derived solution is com- 

pared with numerical solutions obtained by other authors. The flow in the region 
of molecular transport is defined by equations of the boundary layer with asymp- 

totic conditions at plus and minus infinity, determined by the external solution 

(internal problems, A numerical solution of the internal problem is obtained 

taking into consideration multi~m~nent diffusion and heat exchange, The 
problem of multicomponent gas flow in the shock layer close to the stagnation 

line was previously considered in [l] with the use of simplified Naviergtokes 
equations. 

The supersonic flow of a homogeneous inviscid and non-heat-conducting gas 
around blunted bodies in the presence of subsonic injection was considered in 

[2 - 71 using Euler’s equations, An analytic solution, based on the classic solu- 
tion obtained by Hill for a spherical vortex, was derived in [2] for a sphere on 

the assumption of constant but different densities in the layers between the shock 
wave and the contact discontinuity and between the latter and the body. Certain 
results of a nurner~~~ solution of the problem of.intensive injection at the SUI- 

face of ax&symmetric bodies of various forms, obtained by Godunov’s method 
[3], are presented, Telenin’s method was used in [4f for numerical investigation 


